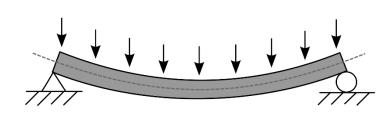
DEFLECTION CONTROL

Application

Dr.ing. NAGY-GYÖRGY Tamás Assoc. Prof.



E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office:

A219

SLS deflection - general

The control of deflection can be done:

- by calculation
- by tabulated values

SLS = quasi-permanent load condition

 $G + \psi_2 Q_k$

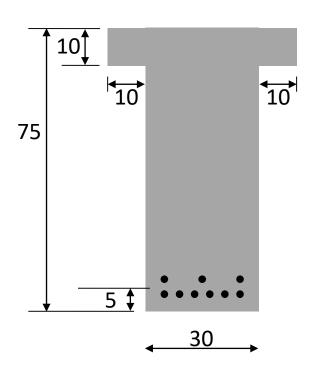
1. DEFLECTION CONTROL BY CALCULATION

2. DEFLECTION CONTROL WITHOUT CALCULATION

DEFLECTION CONTROL

Deflection control by calculation

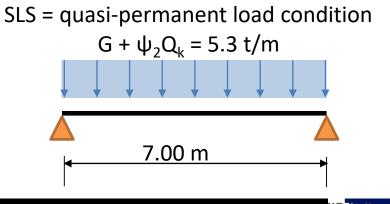
Simple supported RC beam deflection calculus



 $9\emptyset 20 = 28.26 \ cm^2$ $C25/30 \rightarrow f_{ck} = 25 \ N/mm^2$ $\rightarrow f_{ctm} = 2.6 \ N/mm^2$ $\rightarrow E_{cm} = 31000 \ N/mm^2$ PC52 $c_{nom} = 25 \ mm$

 $t_0 = 28 \ days$

$$t = 57 \ years = 20805 \ days$$



Dr.ing. Nagy-György T. ©

Politehnica 4

An adequate prediction of behaviour is given by:

 $\alpha = (1-\zeta)\alpha_I + \zeta\alpha_{II}$

- α the deformation parameter considered which may be strain, curvature or rotation; α may also be taken as a deflection
- α_I, α_{II} parameter value corresponding to the stage I (un-cracked) or II (fully cracked)
- ζ distribution coefficient, allowing for tensioning stiffening at a section ($\zeta = 0$ for un-cracked elements)

$$\zeta = 1 - \beta \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2$$

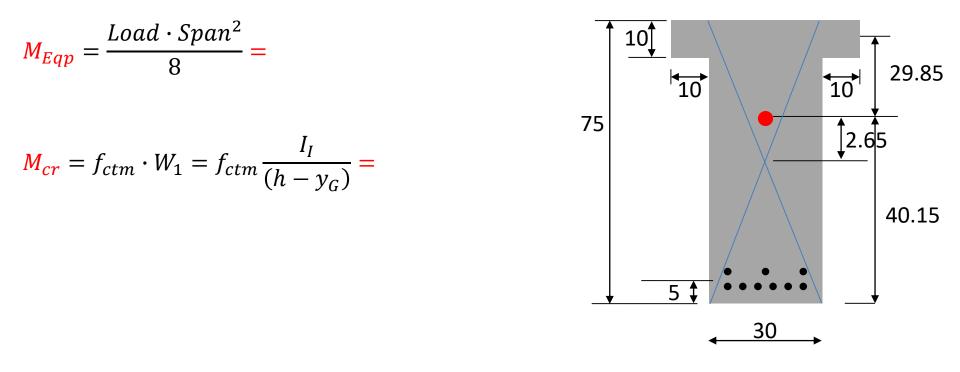
ζ

Deflection control by calculation

- distribution coefficient, allowing for tensioning stiffening at a section ($\zeta = 0$ for un-cracked elements)

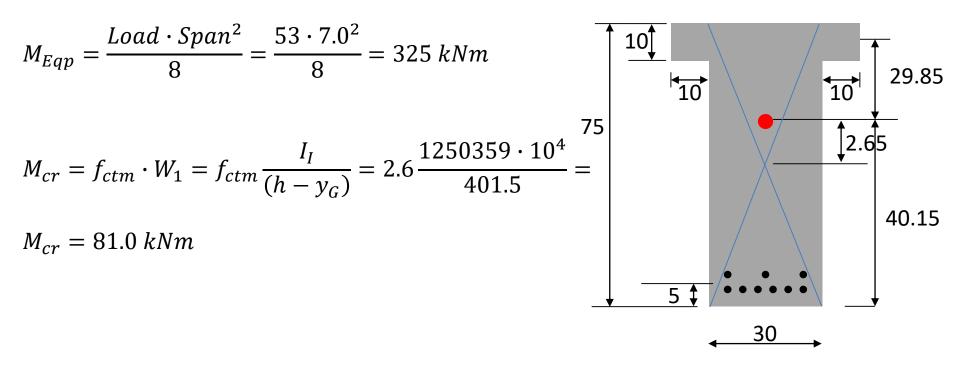
$$\zeta = 1 - \beta \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2$$

- β coefficient taking account of the influence of the duration of the loading or of repeated loading on the average strain
 - = 1.0 for a single short-term loading
 - = 0.5 for sustained loads or many cycles of repeated loading
- σ_s stress in the tension reinforcement calculated on the basis of a cracked section
- σ_{sr} stress in the tension reinforcement calculated on the basis of a cracked section under the loading conditions causing first cracking;
- NOTE: σ_{sr}/σ_s may be replaced by M_{cr}/M_{Eqp} for bending



$$I_{I} = \frac{30 \cdot 75^{3}}{12} + 30 \cdot 75 \cdot 2.65^{2} + \frac{20 \cdot 10^{3}}{12} + 20 \cdot 10 \cdot 29.85^{2} = 1250359 \ cm^{4} = 1250359 \cdot 10^{4} \ mm^{4}$$

 I_I - second moment of area of the un-cracked concrete section (stage I)



 $I_{I} = \frac{30 \cdot 75^{3}}{12} + 30 \cdot 75 \cdot 2.65^{2} + \frac{20 \cdot 10^{3}}{12} + 20 \cdot 10 \cdot 29.85^{2} = 1250359 \ cm^{4} = 1250359 \cdot 10^{4} \ mm^{4}$

 I_I - second moment of area of the un-cracked concrete section (stage I)

ζ

β

Deflection control by calculation

- distribution coefficient, allowing for tensioning stiffening at a section ($\zeta = 0$ for un-cracked elements)

$$\zeta = 1 - \beta \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2$$

- coefficient taking account of the influence of the duration of the loading or of repeated loading on the average strain
 - = 1.0 for a single short-term loading
 - = 0.5 for sustained loads or many cycles of repeated loading

$$\zeta = 1 - \beta \left(\frac{M_{cr}}{M_{Eqp}}\right)^2 =$$

ζ

β

Deflection control by calculation

- distribution coefficient, allowing for tensioning stiffening at a section ($\zeta = 0$ for un-cracked elements)

$$\zeta = 1 - \beta \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2$$

- coefficient taking account of the influence of the duration of the loading or of repeated loading on the average strain
 - = 1.0 for a single short-term loading
 - = 0.5 for sustained loads or many cycles of repeated loading

$$\zeta = 1 - \beta \left(\frac{M_{cr}}{M_{Eqp}}\right)^2 = 1 - 0.5 \left(\frac{81.0}{325}\right)^2 = 0.97$$

Curvature due to loads

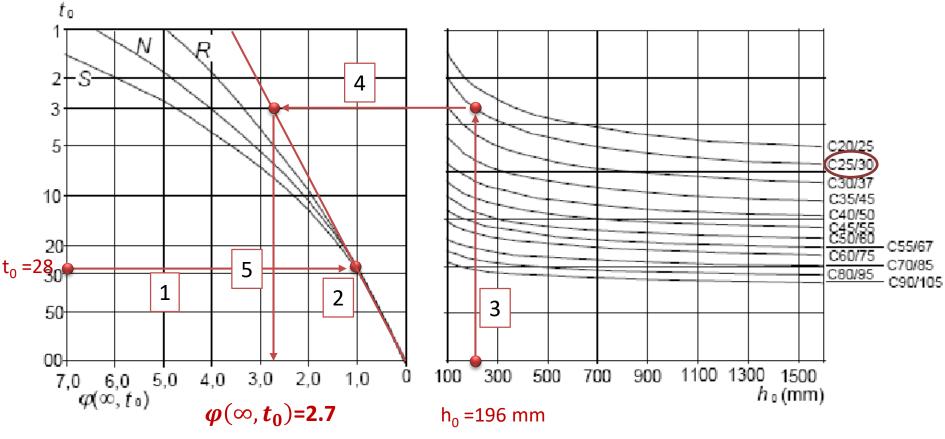
Un-cracked stage I

 $\frac{1}{r_I} = \frac{M_{Eqp}}{E_{c,eff}I_I}$

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)}$$

Determination of creep coefficient

$$h_0 = \frac{2A_c}{u} = \frac{2(2 \cdot 10 \cdot 10 + 30 \cdot 75)}{30 + 2 \cdot 65 + 2 \cdot 10 + 2 \cdot 10 + 50} = 196 \, mm$$



inside conditions - RH = 50%

Curvature due to loads

Un-cracked stage I

 $\frac{1}{r_I} = \frac{M_{Eqp}}{E_{c,eff}I_I}$

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)} =$$

Curvature due to loads

Un-cracked stage I

 $\frac{1}{r_I} = \frac{M_{Eqp}}{E_{c,eff}I_I} =$

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)} = \frac{31000}{1 + 2.7} = 8378 MPa$$

Curvature due to loads

Un-cracked stage I

$$\frac{1}{r_I} = \frac{M_{Eqp}}{E_{c,eff}I_I} = \frac{325 \cdot 10^6}{8378 \cdot 1250359 \cdot 10^4} = 3.10 \cdot 10^{-6}$$

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)} = \frac{31000}{1 + 2.7} = 8378 MPa$$

DEFLECTION CONTROL

Deflection control by calculation

Curvature due to loads

Fully cracked stage II

$$\frac{1}{r_{II}} = \frac{M_{Eqp}}{E_{c,eff} \cdot I_{II}}$$

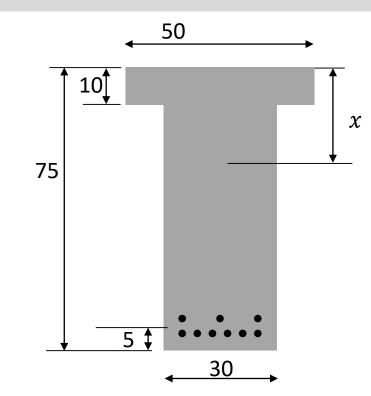
*I*_{II} - inertia of the cracked section

$$I_{II} = I_{cc} + (\alpha_e - 1)A_{s2}(x - d_2)^2 + \alpha_e A_{s1}(d - x)^2$$

I_{cc} - inertia of compressed concrete area about neutral axis
 - inertia of reinforcement area about own axis is negligible

$$I_{cc} = \frac{bx^3}{3} - (b - b_w) \frac{(x - h_f)^3}{3}$$

$$\alpha_e = \frac{E_s}{E_c}$$
 - coefficient of equivalence



Deflection control by calculation

DEFLECTION CONTROL

50 **Curvature due to loads** 10 x can be computed from> X 75 $0.5bx^{2} - 0.5(b - b_{w})(x - h_{f})^{2} - \alpha_{e}A_{s1}(d - x) = 0$ $\alpha_e = \frac{E_s}{E_c} =$ 5 30 $(0.5 \cdot 50 \cdot x^2 - 0.5(50 - 30)(x - 10)^2 - 25.1 \cdot 28.26(70 - x) = 0)$

x =

Dr.ing. Nagy-György T. ©

Deflection control by calculation

DEFLECTION CONTROL

50 **Curvature due to loads** 10 x can be computed from> X 75 $0.5bx^{2} - 0.5(b - b_{w})(x - h_{f})^{2} - \alpha_{e}A_{s1}(d - x) = 0$ $\alpha_e = \frac{E_s}{E_c} = \frac{210000}{8378} = 25.1$ 5 30 $(0.5 \cdot 50 \cdot x^2 - 0.5(50 - 30)(x - 10)^2 - 25.1 \cdot 28.26(70 - x) = 0)$

x =

Deflection control by calculation

DEFLECTION CONTROL

X

50 **Curvature due to loads** 10 x can be computed from> 75 $0.5bx^{2} - 0.5(b - b_{w})(x - h_{f})^{2} - \alpha_{e}A_{s1}(d - x) = 0$ $\alpha_e = \frac{E_s}{E_c} = \frac{210000}{8378} = 25.1$ 5 30 $(0.5 \cdot 50 \cdot x^2 - 0.5(50 - 30)(x - 10)^2 - 25.1 \cdot 28.26(70 - x) = 0)$

x = 35.2 cm = 352 mm

DEFLECTION CONTROL

Deflection control by calculation

Curvature due to loads

Fully cracked stage II

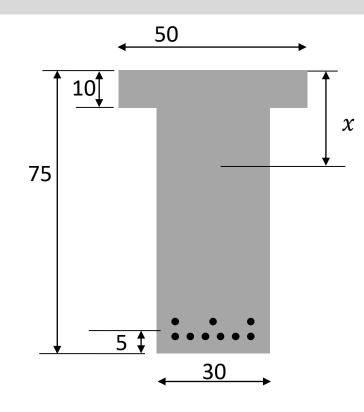
$$\frac{1}{r_{II}} = \frac{M_{Eqp}}{E_{c,eff} \cdot I_{II}}$$

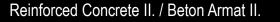
*I*_{II} - inertia of the cracked section

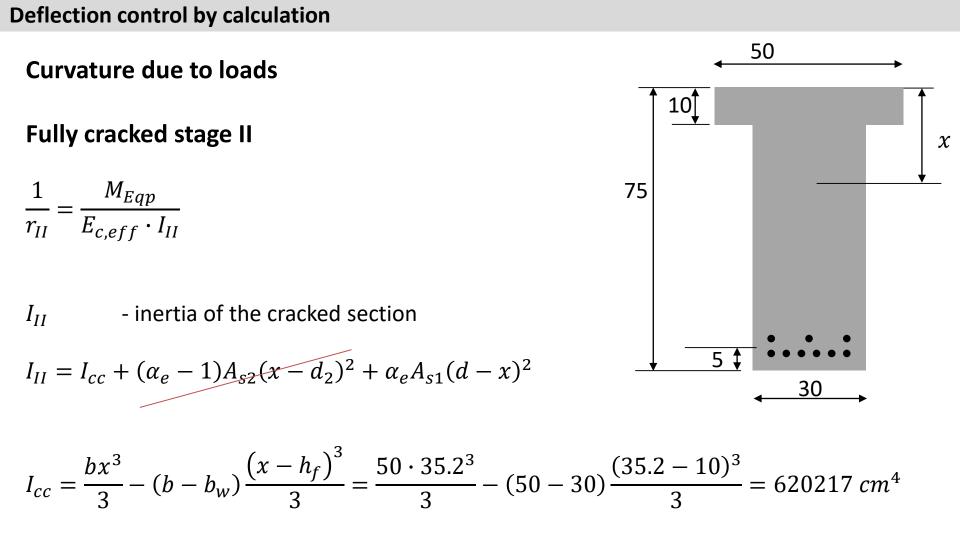
$$I_{II} = I_{cc} + (\alpha_e - 1)A_{s2}(x - d_2)^2 + \alpha_e A_{s1}(d - x)^2$$

$$I_{cc} = \frac{bx^3}{3} - (b - b_w) \frac{(x - h_f)^3}{3} =$$

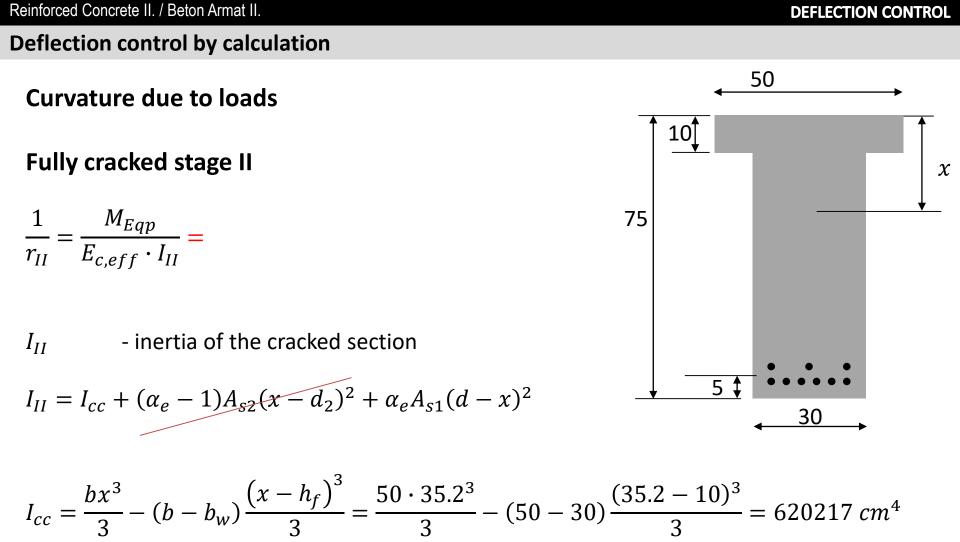
 $I_{II} =$



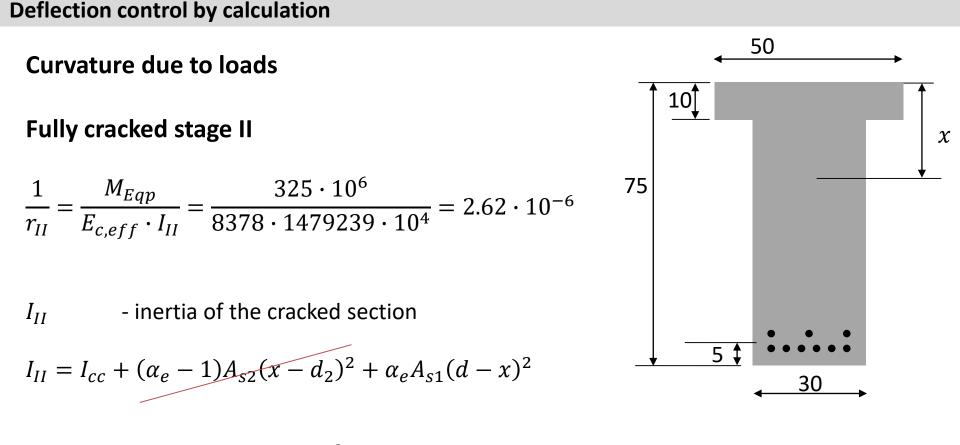




 $I_{II} =$



 $I_{II} = 620217 + 25.1 \cdot 28.26(70 - 35.2)^2 = 1479239 \ cm^4 = 1479239 \cdot 10^4 \ mm^4$



$$I_{cc} = \frac{bx^3}{3} - (b - b_w)\frac{\left(x - h_f\right)^3}{3} = \frac{50 \cdot 35.2^3}{3} - (50 - 30)\frac{(35.2 - 10)^3}{3} = 620217 \ cm^4$$

 $I_{II} = 620217 + 25.1 \cdot 28.26(70 - 35.2)^2 = 1479239 \ cm^4 = 1479239 \cdot 10^4 \ mm^4$

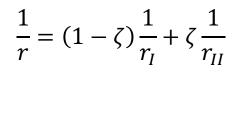
DEFLECTION CONTROL

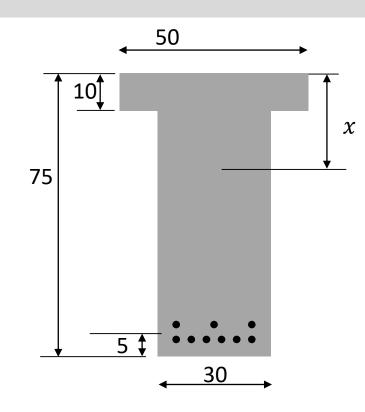
Deflection control by calculation

From the expression of

$$\alpha = (1 - \zeta)\alpha_I + \zeta\alpha_{II}$$

Curvature interpolated value due to loads





1

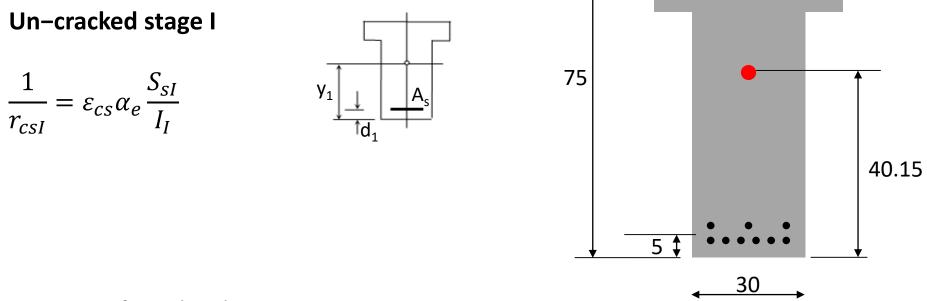
r

Deflection control by calculation 50 From the expression of 10 $\alpha = (1 - \zeta)\alpha_I + \zeta \alpha_{II}$ X 75 **Curvature interpolated value due to loads** $\frac{1}{r} = (1 - \zeta)\frac{1}{r_{I}} + \zeta \frac{1}{r_{II}}$ 5 30

$$\frac{1}{r} = (1 - 0.97) \cdot 3.10 \cdot 10^{-6} + 0.97 \cdot 2.62 \cdot 10^{-6} = 2.63 \cdot 10^{-6}$$

Curvature due to shrinkage

Un-cracked stage I



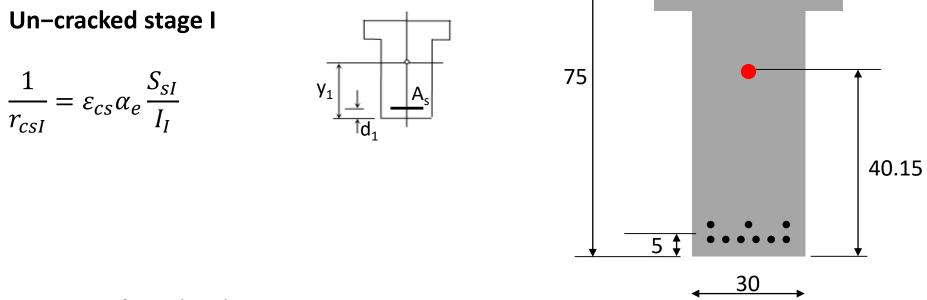
- free shrinkage strain

 ε_{cs} S_{sI} - first moment of area of the reinforcement (A_s) about the centroid of the section

$$S_{sI} = A_s(y_1 - d_1) =$$

Curvature due to shrinkage

Un-cracked stage I



- ε_{cs} S_{sI} - free shrinkage strain
 - first moment of area of the reinforcement (A_s) about the centroid of the section

$$S_{sl} = A_s(y_1 - d_1) = 28.26(40.15 - 5) = 993.3cm^3$$

 ε_{cs} - free shrinkage strain

 $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$

- ε_{cd} drying shrinkage
- ε_{ca} autogenous shrinkage

The final value of drying shrinkage strain

 $\varepsilon_{cd,\infty} = k_h \cdot \varepsilon_{cd,0} =$

 $h_0 = 2A_c/u = 196 mm$

 Table 3.3 Values for k_h in Expression (3.9)

 h_0 k_h

 100
 1.0

 200
 0.85

 300
 0.75

 \geq 500
 0.70

 $k_h = 0,856$

Table 3.2 Nominal unrestrained drying shrinkage values $\mathcal{E}_{cd,0}$ (in $^{0}/_{00}$) for concrete with cement CEM Class N

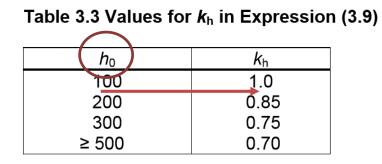
f _{ck} /f _{ck,cube} (MPa)	Relative Humidity (in ⁰ / ₀)							
	20	40	60	80	90	100		
20/25	0.62	0.58	0.49	0.30	0.17	0.00		
40/50	0.48	0.46	0.38	0.24	0.13	0.00		
60/75	0.38	0.36	0.30	0.19	0.10	0.00		
80/95	0.30	0.28	0.24	0.15	0.08	0.00		
90/105	0.27	0.25	0.21	0.13	0.07	0.00		

$$\varepsilon_{cd,0} = 0.463\%_0$$

The final value of drying shrinkage strain

$$\varepsilon_{cd,\infty}=k_h\cdot\varepsilon_{cd,0}=0.856\cdot0.463=0.396$$

 $h_0 = 2A_c/u = 196 mm$



 $k_h = 0,856$

Table 3.2 Nominal unrestrained drying shrinkage values $\mathcal{E}_{cd,0}$ (in $^{0}/_{00}$) for concrete with cement CEM Class N

f _{ck} /f _{ck,cube} (MPa)	Relative Humidity (in ⁰ / ₀)							
	20	40	60	80	90	100		
20/25	0.62	0.58	0.49	0.30	0.17	0.00		
40/50	0.48	0.46	0.38	0.24	0.13	0.00		
60/75	0.38	0.36	0.30	0.19	0.10	0.00		
80/95	0.30	0.28	0.24	0.15	0.08	0.00		
90/105	0.27	0.25	0.21	0.13	0.07	0.00		

$$\varepsilon_{cd,0} = 0.463\%_0$$

The value of drying shrinkage at 57 years :

$$\varepsilon_{cd}(57 \text{ years}) = \beta_{ds}(t, t_s) \cdot k_h \cdot \varepsilon_{cd,0} =$$

$$\beta_{ds}(t,t_s) = \frac{(t-t_s)}{(t-t_s) + 0.04\sqrt{h_0^3}} =$$

 $t_0 = 28 \ days$

 $t = 57 \ years = 20805 \ days$

-the age of the concrete (days) at the beginning of drying shrinkage (or swelling). Normally this is at the end of curing;

- the age of the concrete at the moment considered, in days

The value of drying shrinkage at 57 years :

$$\varepsilon_{cd}(57 \text{ years}) = \beta_{ds}(t, t_s) \cdot k_h \cdot \varepsilon_{cd,0} =$$

$$\beta_{ds}(t,t_s) = \frac{(t-t_s)}{(t-t_s) + 0.04\sqrt{h_0^3}} = \frac{(20805 - 28)}{(20805 - 28) + 0.04\sqrt{196^3}} = 0.995$$

 $t_0 = 28 \ days$

-the age of the concrete (days) at the beginning of drying shrinkage (or swelling). Normally this is at the end of curing;

t = 57 years = 20805 days

- the age of the concrete at the moment considered, in days

The value of drying shrinkage at 57 years :

 $\varepsilon_{cd}(57 \ years) = \beta_{ds}(t, t_s) \cdot k_h \cdot \varepsilon_{cd,0} = 0.995 \cdot 0.856 \cdot 0.463 = 0.394\%_0$

$$\beta_{ds}(t,t_s) = \frac{(t-t_s)}{(t-t_s) + 0.04\sqrt{h_0^3}} = \frac{(20805 - 28)}{(20805 - 28) + 0.04\sqrt{196^3}} = 0.995$$

 $t_0 = 28 \ days$

-the age of the concrete (days) at the beginning of drying shrinkage (or swelling). Normally this is at the end of curing;

t = 57 years = 20805 days

- the age of the concrete at the moment considered, in days

The final value of autogenous shrinkage strain

 $\varepsilon_{ca,\infty} = 2.5(f_{ck} - 10) \cdot 10^{-6} =$

The value of autogenous shrinkage at 57 years:

 $\varepsilon_{ca}(57 \text{ years}) = \beta_{as}(57 \text{ years}) \cdot \varepsilon_{ca,\infty} =$

 $\beta_{as}(57 \text{ years}) = 1 - e^{-0.2t^{0.5}}$

The final value of autogenous shrinkage strain

$$\varepsilon_{ca,\infty} = 2,5(f_{ck} - 10) \cdot 10^{-6} = 2.5(25 - 10) \cdot 10^{-6} = 0.037\%_0$$

The value of autogenous shrinkage at 57 years:

$$\varepsilon_{ca}(57 \text{ years}) = \beta_{as}(57 \text{ years}) \cdot \varepsilon_{ca,\infty} =$$

$$\beta_{as}(57 \text{ years}) = 1 - e^{-0.2t^{0.5}} = 1 - e^{-0.2 \cdot 20805^{0.5}} = 1$$

The final value of autogenous shrinkage strain

$$\varepsilon_{ca,\infty} = 2,5(f_{ck} - 10) \cdot 10^{-6} = 2.5(25 - 10) \cdot 10^{-6} = 0.037\%_0$$

The value of autogenous shrinkage at 57 years:

$$\varepsilon_{ca}(57 \text{ years}) = \beta_{as}(57 \text{ years}) \cdot \varepsilon_{ca,\infty} = 0.037\%_0$$

$$\beta_{as}(57 \text{ years}) = 1 - e^{-0.2t^{0.5}} = 1 - e^{-0.2 \cdot 20805^{0.5}} = 1$$

The total shrinkage strain:

 $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca} =$

The final value of autogenous shrinkage strain

$$\varepsilon_{ca,\infty} = 2,5(f_{ck} - 10) \cdot 10^{-6} = 2.5(25 - 10) \cdot 10^{-6} = 0.037\%_0$$

The value of autogenous shrinkage at 57 years:

$$\varepsilon_{ca}(57 \text{ years}) = \beta_{as}(57 \text{ years}) \cdot \varepsilon_{ca,\infty} = 0.037\%_0$$

$$\beta_{as}(57 \text{ years}) = 1 - e^{-0.2t^{0.5}} = 1 - e^{-0.2 \cdot 20805^{0.5}} = 1$$

The total shrinkage strain:

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca} = 0.394 + 0.037 = 0.431\%_0$$

Deflection control by calculation

Curvature due to shrinkage

Un-cracked stage I

$$\frac{1}{r_{csI}} = \varepsilon_{cs} \alpha_e \frac{S_{sI}}{I_I} =$$

Curvature due to shrinkage

Un-cracked stage I

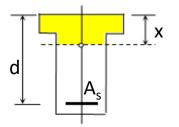
$$\frac{1}{r_{csI}} = \varepsilon_{cs} \alpha_e \frac{S_{sI}}{I_I} = \frac{0.431}{1000} \cdot 25.1 \frac{993.3 \cdot 10^3}{1250359 \cdot 10^4} = 0.859 \cdot 10^{-6}$$

Curvature due to shrinkage

Fully cracked stage II

 $\frac{1}{r_{csII}} = \varepsilon_{cs} \alpha_e \frac{S_{sII}}{I_{II}}$

- I_{II} inertia of the cracked section
- S_{sII} 1st moment of A_s about cracked section centroid



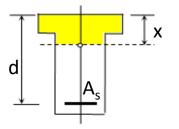
 $S_{sI} = A_s(d-x) =$

Curvature due to shrinkage

Fully cracked stage II

 $\frac{1}{r_{csII}} = \varepsilon_{cs} \alpha_e \frac{S_{sII}}{I_{II}}$

- I_{II} inertia of the cracked section
- S_{sII} 1st moment of A_s about cracked section centroid



 $S_{sI} = A_s(d - x) = 28.26(70 - 35.2) = 983.5 \ cm^3$

Deflection control by calculation

Curvature due to shrinkage

Fully cracked stage II

$$\frac{1}{r_{csII}} = \varepsilon_{cs} \alpha_e \frac{S_{sII}}{I_{II}} =$$

Curvature due to shrinkage

Fully cracked stage II

$$\frac{1}{r_{csII}} = \varepsilon_{cs} \alpha_e \frac{S_{sII}}{I_{II}} = \frac{0.431}{1000} \cdot 25.1 \frac{983.5 \cdot 10^3}{1479239 \cdot 10^4} = 0.719 \cdot 10^{-6}$$

Deflection control by calculation

Curvature interpolated value due to shrinkage

$$\frac{1}{r_{cs}} = (1-\zeta)\frac{1}{r_{csI}} + \zeta \frac{1}{r_{csII}} =$$

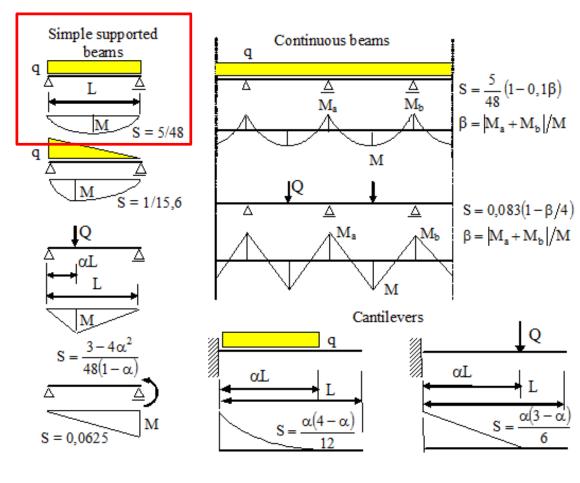
Curvature interpolated value due to shrinkage

$$\frac{1}{r_{cs}} = (1-\zeta)\frac{1}{r_{csl}} + \zeta\frac{1}{r_{csll}} = (1-0.97) \cdot 0.859 \cdot 10^{-6} + 0.97 \cdot 0.719 \cdot 10^{-6} = 0.723 \cdot 10^{-6}$$

DEFLECTION CONTROL

Deflection control by calculation

Deflection of bent elements:



$$f = SL^2\left(\frac{1}{r} + \frac{1}{r_{cs}}\right) =$$

design span

L

1/r

 $1/r_{cs}$

- curvature due to loads
- curvature due to shrinkage

Dr.ing. Nagy-György T. ©

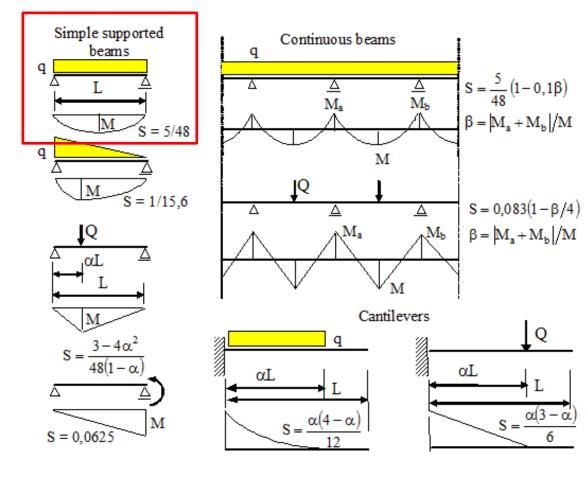
Faculty of Civil Engineering

Universitatea Politehnica 46 Timișoara

DEFLECTION CONTROL

Deflection control by calculation

Deflection of bent elements:



$$f = SL^2 \left(\frac{1}{r} + \frac{1}{r_{cs}}\right) = \frac{5}{48}7000^2 (2.63 \cdot 10^{-6} + 0.723 \cdot 10^{-6}) = \mathbf{17.1} \,\mathbf{mm} \, < \frac{L}{\mathbf{250}} = \mathbf{28} \,\mathbf{mm}$$

1. DEFLECTION CONTROL BY CALCULATION

2. DEFLECTION CONTROL WITHOUT CALCULATION

Deflection control without calculation

For span-depth ratios below 7,5 m no further checks are needed if $\left(\frac{L}{d}\right) \leq \left(\frac{L}{d}\right)_{lim}$

$$\left(\frac{L}{d}\right)_{lim} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_0}{\rho} + 3.2\sqrt{f_{ck}} \left(\frac{\rho_0}{\rho} - 1\right)^{3/2} \right] \qquad \text{if } \rho \le \rho_0$$

$$\left(\frac{L}{d}\right)_{lim} = K \left[11 + 1,5\sqrt{f_{ck}}\frac{\rho_0}{\rho - \rho'} + \frac{1}{12}\sqrt{f_{ck}\frac{\rho'}{\rho_0}}\right] \qquad \text{if } \rho > \rho_0$$

where:

 $\begin{pmatrix} \frac{L}{d} \\ lim \end{pmatrix}$ is the limit span/depth K is the factor to take into account the different structural systems $\rho_0 = \sqrt{f_{ck}} \cdot 10^{-3}$ is the reference reinforcement ratio ρ is the required tension reinforcement ratio at mid-span from design loads ρ' is the required compression reinforcement ratio at mid-span from design loads

The expressions have been derived for an assumed stress in the reinforcing steel at mid span stress $\sigma_s = 310 \text{ N/mm}^2$ (corresponding roughly to $f_{yk} = 500 MPa$)

Dr.ing. Nagy-György T. ©

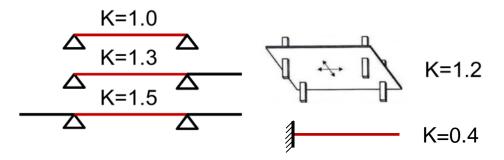
Faculty of Civil Engineering

DEFLECTION CONTROL

Deflection control by calculation

Structural evetom	Factor K	l/d	
Structural system	Factor	$\rho = 1,5 \%$	ho = 0,5 %
Simply supported slab/beam	1,0	14	20
End span	1,3	18	26
Interior span	1,5	20	30
Flat slab	1,2	17	24
Cantilever	0,4	6	8

Table 3.3.1 Tabulated values for *I*/*d*



a) Correction for σ_s

If another stress level is applied or if more reinforcement than minimum required is provided, the values obtained for $\left(\frac{L}{d}\right)_{lim}$ should be multiplied by $\frac{310}{\sigma_s}$.

It will normally be conservative to assume that

$$\frac{310}{\sigma_s} = \frac{500}{f_{yk}} \frac{A_{s,req}}{A_{s,prov}}$$

Where

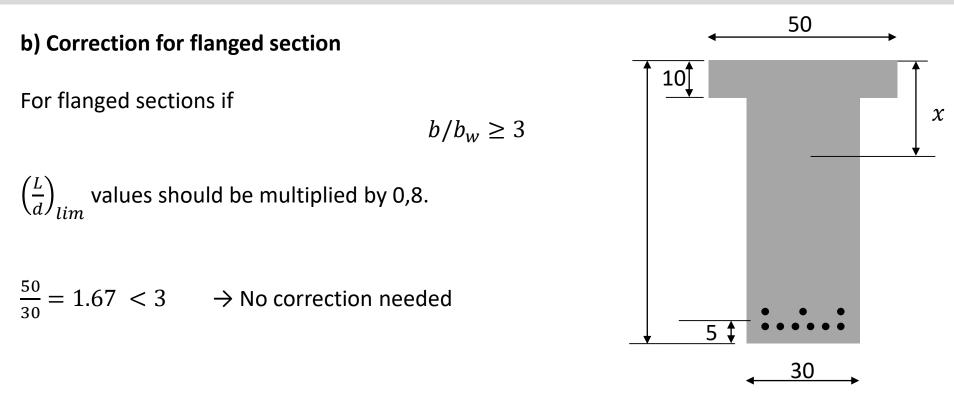
 σ_s is the tensile steel stress at mid-span under the design load at SLS $A_{s,req}$ is the area of steel required at this section for ultimate limit state $A_{s,prov}$ is the area of steel provided at this section

$$\sigma_s = \alpha_e \sigma_{c,s} = \alpha_e \frac{M}{I_{II}} (d-x) = 25.1 \frac{325 \cdot 10^6}{1479239 \cdot 10^4} (700 - 352) = 192 MPa$$

$$\Rightarrow \qquad \frac{310}{\sigma_s} = \frac{310}{192} = 1.56$$

DEFLECTION CONTROL

Deflection control by calculation



c) Corrections for beams and slabs (no flat slabs) with spans larger than 7 m

It is not the case \rightarrow No correction needed

Deflection control without calculation

$$\rho_0 = \sqrt{f_{ck}} \cdot 10^{-3} = 0.005$$

$$\rho = \frac{A_s}{bd} = \frac{2826}{300 \cdot 700} = 0.013$$

Table 3.3.1 Tabulated values for I/d

Structural system	Factor K	l/d	
		ho = 1,5 %	ho = 0,5 %
Simply supported slab/beam	1,0	14	20
End span	1,3	18 -	2 6
Interior span	1,5	20	30
Flat slab	1,2	17	24
Cantilever	0,4	6	8

$$\rightarrow \rho > \rho_0$$

$$\left(\frac{L}{d}\right) = K \left[11 + 1.5\sqrt{f_{ck}}\frac{\rho_0}{\rho - \rho'} + \frac{1}{12}\sqrt{f_{ck}}\frac{\rho'}{\rho_0}\right] = 1 \left[11 + 1.5\sqrt{25}\frac{0.005}{0.013 - 0} + \frac{1}{12}\sqrt{25}\sqrt{\frac{0}{0.005}}\right] = 13.9$$

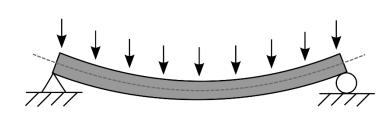
$$\left(\frac{L}{d}\right)_{lim} = 1.56 * 13.9 = 21.7 mm$$

$$\rightarrow \left(\frac{L}{d}\right) \le \left(\frac{L}{d}\right)_{lim}$$

$$\left(\frac{L}{d}\right) = \frac{7.00}{0.70} = 10$$

Dr.ing. Nagy-György T. ©

Dr.ing. NAGY-GYÖRGY Tamás Conferențiar



E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219

THANK YOU FOR YOUR ATTENTION!

Dr.ing. Nagy-György T. ©

